Auto and Base model classes in AutoAWQ¶
View the documentation of the main classes of AutoAWQ models below.
awq.models.auto.AutoAWQForCausalLM
¶
AutoAWQForCausalLM()
Source code in awq/models/auto.py
54 55 56 57 58 |
|
from_pretrained
classmethod
¶
from_pretrained(model_path, trust_remote_code=True, safetensors=True, device_map='auto', download_kwargs=None, **model_init_kwargs)
PARAMETER | DESCRIPTION |
---|---|
model_path
|
|
trust_remote_code
|
DEFAULT:
|
safetensors
|
DEFAULT:
|
device_map
|
DEFAULT:
|
download_kwargs
|
DEFAULT:
|
**model_init_kwargs
|
DEFAULT:
|
Source code in awq/models/auto.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
from_quantized
classmethod
¶
from_quantized(quant_path, quant_filename='', max_seq_len=2048, trust_remote_code=True, fuse_layers=True, use_exllama=False, use_exllama_v2=False, use_ipex=False, batch_size=1, safetensors=True, device_map='balanced', max_memory=None, offload_folder=None, download_kwargs=None, **config_kwargs)
PARAMETER | DESCRIPTION |
---|---|
quant_path
|
|
quant_filename
|
DEFAULT:
|
max_seq_len
|
DEFAULT:
|
trust_remote_code
|
DEFAULT:
|
fuse_layers
|
DEFAULT:
|
use_exllama
|
DEFAULT:
|
use_exllama_v2
|
DEFAULT:
|
use_ipex
|
DEFAULT:
|
batch_size
|
DEFAULT:
|
safetensors
|
DEFAULT:
|
device_map
|
DEFAULT:
|
max_memory
|
DEFAULT:
|
offload_folder
|
DEFAULT:
|
download_kwargs
|
DEFAULT:
|
**config_kwargs
|
DEFAULT:
|
Source code in awq/models/auto.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
awq.models.base.BaseAWQForCausalLM
¶
BaseAWQForCausalLM(model, model_type, is_quantized, config, quant_config, processor)
Bases: Module
The base model for all AutoAWQ models.
PARAMETER | DESCRIPTION |
---|---|
model
|
The pretrained or quantized model.
TYPE:
|
model_type
|
The model type, found in config.json.
TYPE:
|
is_quantized
|
Indicates if the current model is quantized.
TYPE:
|
config
|
The config of the model.
TYPE:
|
quant_config
|
The quantization config of the model.
TYPE:
|
processor
|
An optional processor, e.g. for vision models.
TYPE:
|
Source code in awq/models/base.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
to
¶
to(device)
A utility function for moving the model to a device.
PARAMETER | DESCRIPTION |
---|---|
device
|
The device to move your model to.
TYPE:
|
Source code in awq/models/base.py
116 117 118 |
|
forward
¶
forward(*args, **kwargs)
A forward function that mimics the torch forward.
PARAMETER | DESCRIPTION |
---|---|
*args
|
DEFAULT:
|
**kwargs
|
DEFAULT:
|
Source code in awq/models/base.py
120 121 122 |
|
generate
¶
generate(*args, **kwargs)
A generate function that mimics the HF generate function.
PARAMETER | DESCRIPTION |
---|---|
*args
|
DEFAULT:
|
**kwargs
|
DEFAULT:
|
Source code in awq/models/base.py
124 125 126 127 |
|
quantize
¶
quantize(tokenizer=None, quant_config={}, calib_data='pileval', split='train', text_column='text', duo_scaling=True, export_compatible=False, apply_clip=True, n_parallel_calib_samples=None, max_calib_samples=128, max_calib_seq_len=512, max_chunk_memory=1024 * 1024 * 1024, quantizer_cls=AwqQuantizer, **kwargs)
The main quantization function that you can use to quantize your model.
Example:
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = "..."
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
model.quantize(tokenizer, quant_config)
PARAMETER | DESCRIPTION |
---|---|
tokenizer
|
The tokenizer to use for quantization.
TYPE:
|
quant_config
|
The quantization config you want to use.
TYPE:
|
calib_data
|
The calibration dataset. Either a string pointing to Huggingface or a list of preloaded examples.
TYPE:
|
split
|
The split of calib_data.
TYPE:
|
text_column
|
The text column of calib_data.
TYPE:
|
duo_scaling
|
Whether to scale using both w/x or just x.
TYPE:
|
export_compatible
|
This argument avoids real quantization by only applying the scales without quantizing down to FP16.
TYPE:
|
apply_clip
|
Whether to apply clipping to the model during quantization. Some models may perform better with this set to False.
TYPE:
|
n_parallel_calib_samples
|
The number of parallel samples to run through the model. A high number of parallel samples can result in OOM during quantization if max_calib_samples is high enough. If None, runs through all samples at the same time. You can set this to a low number for more memory efficient quantization.
TYPE:
|
max_calib_samples
|
The maximum number of samples to run through the model.
TYPE:
|
max_calib_seq_len
|
The maximum sequence length of the calibration dataset. Discard samples greater than max_calib_seq_len.
TYPE:
|
max_chunk_memory
|
The loss computation and per-channel mean is optimized into chunked computations. Adjust this parameter to increase or decrease memory usage for these computations. Default is 1GB (1024 * 1024 * 1024).
TYPE:
|
quantizer_cls
|
If you want to customize the quantization class, you can use AwqQuantizer as a base class.
TYPE:
|
**kwargs
|
DEFAULT:
|
Source code in awq/models/base.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|
pack
¶
pack()
A utility function for the following scenario. Note that save_quantized will overwrite existing weights if you use the same quant_path.
Example:
model.quantize(
tokenizer,
quant_config=quant_config,
export_compatible=True
)
model.save_quantized(...) # produces GGUF/other compat weights
model.pack(...) # makes the model CUDA compat
model.save_quantized(...) # produces CUDA compat weights
Source code in awq/models/base.py
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
fuse_layers
staticmethod
¶
fuse_layers(model)
PARAMETER | DESCRIPTION |
---|---|
model
|
|
Source code in awq/models/base.py
263 264 265 |
|
save_quantized
¶
save_quantized(save_dir, safetensors=True, shard_size='5GB')
PARAMETER | DESCRIPTION |
---|---|
save_dir
|
The directory to save your model to.
TYPE:
|
safetensors
|
Whether to save the model as safetensors or torch files.
TYPE:
|
shard_size
|
The shard size for sharding large models into multiple chunks.
TYPE:
|
Source code in awq/models/base.py
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
from_pretrained
classmethod
¶
from_pretrained(model_path, model_type, torch_dtype=float16, trust_remote_code=True, safetensors=True, device_map='auto', download_kwargs=None, **model_init_kwargs)
A method for initialization of pretrained models, usually in FP16.
PARAMETER | DESCRIPTION |
---|---|
model_path
|
A Huggingface path or local path to a model.
TYPE:
|
model_type
|
The model type, loaded from config.json.
TYPE:
|
torch_dtype
|
The dtype to load the model as. May not work with other values than float16.
TYPE:
|
trust_remote_code
|
Useful for Huggingface repositories that have not been integrated into transformers yet.
TYPE:
|
safetensors
|
Whether to download/load safetensors instead of torch weights.
TYPE:
|
device_map
|
A device map that will be passed onto the model loading method from transformers.
TYPE:
|
download_kwargs
|
Used for configure download model
TYPE:
|
**model_init_kwargs
|
Additional kwargs that are passed to the model during initialization.
TYPE:
|
Source code in awq/models/base.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
|
from_quantized
classmethod
¶
from_quantized(model_path, model_type, model_filename='', max_seq_len=None, torch_dtype=float16, trust_remote_code=True, safetensors=True, fuse_layers=True, use_exllama=False, use_exllama_v2=False, use_ipex=False, device_map='balanced', max_memory=None, offload_folder=None, download_kwargs=None, **config_kwargs)
A method for initialization of a quantized model, usually in INT4.
PARAMETER | DESCRIPTION |
---|---|
model_path
|
A Huggingface path or local path to a model.
TYPE:
|
model_type
|
The model type, loaded from config.json.
TYPE:
|
model_filename
|
Load a specific model's filename by specifying this argument.
TYPE:
|
max_seq_len
|
The maximum sequence cached sequence length of the model. Larger values may increase loading time and memory usage.
TYPE:
|
torch_dtype
|
The dtype to load the model as. May not work with other values than float16.
TYPE:
|
trust_remote_code
|
Useful for Huggingface repositories that have not been integrated into transformers yet.
TYPE:
|
safetensors
|
Whether to download/load safetensors instead of torch weights.
TYPE:
|
fuse_layers
|
Whether to use fused/optimized combination of layers for increased speed.
TYPE:
|
use_exllama
|
Whether to map the weights to ExLlamaV1 kernels.
TYPE:
|
use_exllama_v2
|
Whether to map the weights to ExLlamaV2 kernels.
TYPE:
|
use_ipex
|
Whether to map the weights to ipex kernels for CPU and XPU device.
TYPE:
|
device_map
|
A device map that will be passed onto the model loading method from transformers.
TYPE:
|
max_memory
|
A dictionary device identifier to maximum memory which will be passed onto the model loading method from transformers. For example:{0: "4GB",1: "10GB"
TYPE:
|
offload_folder
|
The folder ot offload the model to.
TYPE:
|
download_kwargs
|
Used for configure download model
TYPE:
|
**config_kwargs
|
Additional kwargs that are passed to the config during initialization.
TYPE:
|
Source code in awq/models/base.py
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
|